

Maths Refresher

Working with Decimals

Intent....

- The decimal separates whole numbers from parts of a whole.
- Each digit in a number has a 'place value'
- The value depends on the position of the digit in that number
- Each position can be thought of as columns
- Each column is a power of ten.

Place value recap

For example:

 The decimal indicates which digit is in the 'ones' place. Once this digit is known, we can determine the place value of all other digits in the number.

- A digit's decimal place is its position to the right of the decimal.
- For example, in the numeral 679.32815,
 3 is in the first decimal place, 2 is in the second and so on.

Powers of ten

Any number raised to the power of zero is one because when we divide numbers of the same base with a power, we subtract the power and get zero. We will explore this further in workshop five, when we investigate the 'index laws

$$10^4 = (10 \times 10 \times 10 \times 10 \times 10)$$

 $10^3 = (10 \times 10 \times 10)$
 $10^2 = (10 \times 10)$
 $10^1 = (10)$
 $10^0 = 1$

•
$$10^{-1} = (\frac{1}{10})$$

•
$$10^{-2} = (\frac{1}{100})$$

•
$$10^{-3} = (\frac{1}{1000})$$

 10^{4}	10^{3}	10^{2}	10^{1}	10° •	10^{-1}	10^{-2}	10^{-3}	
				•				

Relationships

Mathematics learning is easy when we see

mathematical relationships

https://www.khanacademy.org/math/algebra-basics/core-algebra-foundations/algebra-foundations-scientific-notation/v/scientific-notation

Decimal facts

- A recurring decimal is a decimal fraction where a digit repeats itself indefinitely
- For example, two thirds = 0.666666
- Because the number repeats itself from the tenths position a dot can be written above the 6 as such 0.6
- If the number was one sixth, 0.16666 we write 0.16
- If the number contained a cluster of repeating digits, for example, five elevenths, 0.454545 we write 0.45
- A terminating decimal is a number terminates after a finite (not infinite) number of places, for example:
- $\frac{2}{5} = \frac{4}{10}$ or 0.4; and $\frac{3}{16} = 0.1875$ (it terminates after 5)

Rounding and significant figures

- When talking about a number such as 24.6666666
- It is complex to talk about it as rounding to the next hundredth, thousandth... too hard to say!!
- Instead we round to so many decimal places
- 25 when rounded to the next whole number
- 24.7when rounded to one decimal place
- 24.67 when rounded to two decimal places
- 24.667 when rounded to three decimal places

"Rounding decimals: to the nearest tenth"

Rounding and significant figures

- We can work with a more complex idea such as rounding to so many significant figures (s.f)
- If we talk about large amounts of money, for example, in a job we could have the potential to earn \$17,632.31 or \$17.672.36 hence the salary is approximately \$17,600. The \$32.31 and \$72.36 are not really significant when talking about large amounts.
- However, for shoes the difference between \$32 & \$72 is significant.
- Thus, given the salaries above we can round to three significant figures: \$17,600 and \$17,700 respectively
- The term significant figures is abbreviated as s.f. they are non zero figures.
- 1694 can be rounded down to three s.f. so it will be 1690

Where do you see decimals in the real world?

Money and measurement.....

The decimal is a separator

- Let's think about 3.5; what does this number tell us?
- Think of this in terms of money \$3.50 three whole units and fifty cents, or half of one dollar.
- In measurement, 3.5cm

Your turn...

Write 3.5cm in metres and in millimetres

- On the number line mark 0.5
- Then mark 3.5
- Then convert 3.5 to metres and then millimetres

3.5cm is the same as 35mm or 0.035m

Working with

What happens when we multiply or divide by ten, or powers of ten?

- We understand patterns when multiplying by ten.
- However, often we say we add a zero. Are we correct?
- Think about 4.3 x 10, does it equal 4.30?
- Another misconception is that we move the decimal one place.
- Whereas, it is actually the digits that move.
- When we multiply by ten, all digits in the number become ten times larger and they move to the left.
- What happens when we divide by 10?

Your turn

- When we divide by ten, the digits in the number all move to the right....
- Practise:
- 865.32÷ 10=
- $865.32 \div 100 =$
- 865.32×10=
- 865.32× 100 =

	PLACE VALUE AND DECIMALS												
millions	hundred thousands	ten thousands	thousands	hundreds	tens	seup	and	tenths	hundredths	thousandths	ten-thousandths	hundred-thousandths	millionths

- The most common way we work with decimals in our daily lives is when we shop or work in retail.
- The key point when we work with addition or subtraction of numbers is to line up the decimal points.
- The zero will often be regarded as a place holder.
- For example, 65.32+74.634=

Computation

- We can now see that decimals are related to the place value concept
- In mathematics learning it is essential to develop deep understandings about the concept of place value.
- The following slides will be a revision on computation strategies and possibly provide you with new strategies to try.
- Often when working with larger numbers a process of renaming is required
- This renaming occurs when we trade, or decompose numbers...
- Graphics from: Van de Walle, J. A. (2007). *Elementary and middle school mathematics: Teaching developmentally* (6th ed.). Sydney: Pearson Education.

Computation

 Following are some different strategies for you to explore in relation to place value, and the four arithmetic concepts

Compensate

Move Some to Make Tens

46 + 38

46+38

44 + 40

84

Take 2 from the 46 and put it with the 38 to make 40. Now you have 44 and 40 more is 84.

Use a Nice Number and Compensate

$$46 + 38$$

46 and 40 is 86. That's 2 extra, so it's 84.

$$86 - 2 \rightarrow 84$$

Add to ten

Add Tens, Add Ones, Then Combine

$$46 + 38$$

40 and 30 is 70. 6 and 8 is 14. 70 and 14 is 84.

$$40 + 30 = 70$$
 $6 + 8 = 14$
 84

Add on Tens, Then Add Ones

$$46 + 38$$

46 and 30 more is 76. Then I added on the other 8. 76 and 4 is 80 and 4 is 84.

$$46 + 30 \rightarrow 76 + 8 \rightarrow 80,84$$

Example..... 47+86=133

$$80 + 20 = 100$$

$$100 + 20 = 120$$

Your turn...

Your turn

- 68+72
- 59+36
- 83+21

Examples...

68+72	59 + 36
68 72	59 + 36
50+10-8 50-20-2	50+9 + 30+6
SO + SO=100 10 + 20 = 30 8+2 = 10 100+30+10=140	80+15=95
10+20=30	
8+2=10	
100+30+10=140	
	83+2
	3 20 20 20
	20520 20520
	100 14 = 104

Example.... 47+86=133

47

+86

133

The first step is to add the ones and we get 13ones or 3 ones and 1 ten, so we add the 1ten to the tens then we add 5tens and 8 tens to get 13tens or 130+3

Subtraction

-	-4	-3	-2	-1	0	1	2	3	4	5
-4	0	-1	-2	-3	-4	-5	-6	-7	-8	-9
-3	1	0	-1	-2	-3	-4	-5	-6	-7	-8
-2	2	1	0	-1	-2	-3	-4	-5	-6	-7
-1	3	2	1	0	-1	-2	-3	-4	-5	-6
0	4	3	2	1	0	-1	-2	-3	-4	-5
1	5	4	3	2	1	0	-1	-2	-3	-4
2	6	5	4	3	2	1	0	-1	-2	-3
3	7	6	5	4	3	2	1	0	-1	-2
4	8	7	6	5	4	3	2	1	0	-1
5	9	8	7	6	5	4	3	2	1	0

subtraction table of integers

Subtraction

Add Tens to Get Close, Then Ones

$$73 - 46$$

46 and 20 is 66. (30 more is too much.) Then 4 more is 70 and 3 is 73. That's 20 and 7 or 27.

$$46 + 20 = 66$$

 $66 + 4 = 70$
 $70 + 3 = 73$
 $20 + 4 + 3 = 27$

Add Tens to Overshoot, Then Come Back

$$73 - 46$$

46 and 30 is 76. That's 3 too much, so it's 27.

$$46 + 30 \rightarrow 76 - 3 \rightarrow 73$$

 $30 - 3 = 27$

Subtraction

Add Ones to Make a Ten, Then Tens and Ones

$$73 - 46$$

46 and 4 is 50. 50 and 20 is 70 and 3 more is 73. The 4 and 3 is 7 and 20 is 27.

$$46 + 4 \rightarrow 50$$

$$50 + 20 \rightarrow 70$$

$$70 + 3 \rightarrow 73$$

$$4 + 20 + 3 = 27$$

Similarly, 46 and 4 is 50. 50 and 23 is 73. 23 and 4 is 27.

$$46 + 4 \rightarrow 50$$

 $50 + 23 \rightarrow 73$
 $23 + 4 = 27$

Subtraction ...74-36=38

 74 – 36 = we can read 74 as 7 tens and 4 ones or 6 tens and 14 ones.
 This is called decomposing numbers.

6 14

74 so first we cannot take 6 from 4,

so we decompose

 $\begin{array}{r}
 74 \\
 -36 \\
 \hline
 38
 \end{array}$

36 now we can subtract 6 *ones* from 14*ones* then we take 3 *tens* from 6 *tens*

Subtraction 74-36=38

74 – 36 = we can read 74 as 7tens and 4ones or 6tens and 14ones. This is called decomposing numbers.

6 14

74 so first we cannot take 6 from 4, so we decompose now we can subtract 6 *ones* from 14 *ones* then we take 3 *tens* from 6 *tens*

Your turn

Use any method to solve the following:

- 632-258=
- 678-596=
- 325-58=

Your turn

- Use any method to solve the following:
- 632-258=374
- 678-596=83
- 325-58=267

Multiplication

How much is 4 times 68?

I used 70s because they were easier than 68s. First I did 70 and 70 is 140.

Then I doubled 140 to get 280.

Multiplication

Your turn with the number line

- 4x32
- 6x18

Traditional Algorithm explained \$\infty\sum_{\text{AUSTRALIA}} \text{JAMES} \\ \text{UNIVE} \\ \text{AUSTRALIA} \end{australia}

Multiplication

- Let's look at 47 × 65
- Let's estimate first $50 \times 60 = 3000$

```
47 multiply the ones, 7 \times 5 = 35 rename 3tens and 5ones \times 65 \times 65 is 20tens, add 3tens = 23 tens, rename: 2hundreds 3tens and five ones multiply the tens, 6tens \times 7 ones = 42tens, 4 hundreds & 2tens
```

3055 6 tens \times 4 tens are 24 hundreds plus 4 hundreds = 28 then add 235+2820=3055

Your turn

Your turn:

- 89x100
- 56x23
- 27x59

Your turn

- Your turn:
- 89x100= 8900
- 56x23 = 1288
- 27x59 = 1593

AUSTRALIA

Division revision

Division with remainder arises when the dividend is not an exact multiple of the divisor, as in the observation that 32 ÷ 6 is 5 with remainder 2. Arithmetically, this corresponds to the statement

$$32 = 5 \times 6 + 2$$
.

We write

http://www.amsi.org.au/teacher modules/pdfs/Whole number arithmetic.pdf

Division ... Steps 1&2

化光度 医水溶性 化二氯化物 化氯化物 医二甲基苯基 化二氯苯基苯甲基苯

Cross out the 2 and the 6. Write 26 in tens column.

Division.... Steps 3&4

5 sets of 5 each is $5 \times 5 = 25$ tens.

Record the 25.

(Note two different ways of recording.) -26 - 25 = 1 tells how many tens are left.

Division

• A new way... 5) 672

Division revision

The old way

Traditional bring-down method

Your turn

•
$$142 \div 2 =$$

•
$$154 \div 4 =$$

•
$$693 \div 9 =$$

•
$$590 \div 25 =$$

•
$$786 \div 15 =$$

Your turn

•
$$142 \div 2 = 71$$

•
$$154 \div 4 = 38.5$$

•
$$693 \div 9 = 77$$

•
$$590 \div 25 = 23.6$$

•
$$786 \div 15 = 52.4$$

$$154 \div 4 = 38.5$$
 $38RZ$

4) 154 or $\frac{2}{4} = 0.5$
 1534
 1232
 32

Examples....

Reflect on the intent of this workshop....

- The decimal separates whole numbers from parts of a whole.
- Each digit in a number has a 'place value'
- The value depends on the position of the digit in that number
- Each position can be thought of as columns
- Each column is a power of ten.