Basic Statistics

Describing Data - Measures of Central Tendency

Describing Data

Learning Intentions

Today we will understand:

- Measures of Central Tendency
* Mean

* Median
* Mode

Describing Data

Two descriptions of data:

- Measures of Central Tendency
- Measures of Dispersion

Measures of Central Tendency

- Mean

Median

Mode

The Average
Bears

Mr. Median

- Arithmetic average

$$
\text { Mean }=\frac{\text { Sum of all data values }}{\text { Number of data values }}
$$

Symbolically,

$$
\overline{\mathrm{x}}=\frac{\sum \mathrm{x}}{\mathrm{n}}
$$

where:

\bar{x} (read as ' x bar') is the mean of the set of x values
Σx is the sum of all the x values
n is the number of x values

Mean

- Calculate the mean height of JCU students

$$
\begin{aligned}
& \text { Height (cm) } \\
& \overline{\mathrm{x}}=\frac{\sum \mathrm{x}}{\mathrm{n}} \\
& =(\underline{175+163+155+149+180+165}) \\
& 6 \\
& =\underline{987} \\
& 6 \\
& =164.5 \mathrm{~cm}
\end{aligned}
$$

You try......

Answers

$$
\text { 1) } \begin{aligned}
\overline{\mathrm{x}} & =\frac{\sum \mathrm{x}}{\mathrm{n}} \\
& =\frac{(23+50+16+44+36+29+47+52+35+42+41+28+26+24+38)}{15} \\
& =531 \\
& =34.5 \mathrm{~g}
\end{aligned}
$$

2) $\overline{\mathrm{x}}=\frac{\sum \mathrm{x}}{\mathrm{n}}$
$=\underline{(90+63+87+56+71+38+42+52+86+79+67+83+69+82+64})$ 15
= 1029
$=68.6 \mathrm{~s}$

Answers

$$
\text { 3) } \begin{aligned}
\bar{x} & =\frac{\sum \mathrm{x}}{\mathrm{n}} \\
& =\frac{(5.3+2.8+3.6+3.9+2.7+4.8+4.2+6.2+5.9+5.1+4.6+5.3+6.9)}{13} \\
& =613 \\
& =4.7 \mathrm{~m}
\end{aligned}
$$

Using Excel to Find the Mean

Measures of Central Tendency

- Mean
- Median

Mode

The Average
Bears

Median

- Middle value of rank ordered data
- Value that separates the higher half of a data set from the lower half
- Can be found by arranging all values from lowest to highest and determining the value in the middle

Median

- If there is an odd number of values in the data set, then the median is the middle value

For the data set:

$$
6,9,1,2,6,5,1
$$

Arrange from lowest to highest:

$$
1,1,2,5,6,6,9
$$

Median

- If there is an even number of values in the data set, then the median is the mean of the two middle values

For the data set:

$$
6,9,1,2,6,5,1
$$

Arrange from lowest to highest:
Two middle values

$$
1,1,2,6,6,9
$$

The median is the mean of 2 and 6 :

$$
\frac{2+6}{2}=4
$$

The median

You try......

- Determine the median for the following data sets

1) $132,139,131,138,132,139,133,137,139$
2) $25,10,16,25,12,22,20,23,13,10$
3) $56,23,48,78,94,35,88,69,44,53,27$

Answers

1) $132,139,131,138,132,139,133,137,139$

Rearrange from lowest to highest:

131, 132, 132, 133,137, 138, 139, 139, 139

Middle value - 137

Median = 137

Answers

2) $25,10,16,25,12,22,20,23,13,10$

Rearrange from lowest to highest:
$10,10,12,13,16,20,22,23,25,25$

Middle values - 16 and 20

Median $=\underline{16+20}=18$ 2

Median = 18

Answers

3) $56,23,48,78,94,35,88,69,44,53,27$

Rearrange from lowest to highest:
$23,27,35,44,48,53,56,69,78,88,94$

Middle value - 53

Median = 53

Mode

- The most frequent measurement
$12,11,15,12,12,11,14,17,15,12,13$,

Number of Cars Sold	Frequency
11	2
12	4
13	1
14	1
15	1
17	

f no number is repeated in the data set, there is no mode

You try......

- Determine the mode for the following data sets

1) $132,139,131,138,132,139,133,137,139$
2) $3,3,3,5,5,5,3,6,4,8,5,4,2,4,3,5$
3) $56,23,48,78,94,35,88,69,44,53,27$

Answers

1) $132,139,131,138,132,139,133,137,139$
$=139$
2) $3,3,3,5,5,5,3,6,4,8,5,4,2,4,3,5$
$=3$ and 5 = bimodal
3) $56,23,48,78,94,35,88,69,44,53,27$
$=$ no mode

Considerations

- Measures of Central Tendency are powerful tools when comparing data
- Type of data determines which measure should be used

MEAN or MEDIAN
MODE

Considerations

- Your data will determine which measure of central tendency is appropriate

- PLOT DATA FIRST

Considerations

- Normally distributed data

Normally Distributed Data: MEAN = MEDIAN = MODE

Considerations

- Positively skewed (right) distribution

Skewed Right: MODE < MEDIAN < MEAN

Considerations

- Negatively skewed (left) distribution

Skewed Left: MEAN < MEDIAN < MODE

Outliers

- Data values that are 'far away' from the main group of data
- Outliers are the values that lie outside the other values

Outlier

Outliers

- Outliers have extreme effects on the mean

Consider:
$5,6,4,7,6,19$
$\overline{\mathrm{x}}=\frac{\Sigma \mathrm{x}}{\mathrm{n}}$
$=\underline{5+6+4+7+6+19}$
6
Mean $=9$

$$
5,6,4,7,6
$$

$$
\overline{\mathrm{x}}=\frac{\Sigma \mathrm{x}}{\mathrm{n}}
$$

$$
=\underline{5+6+4+7+6}
$$

$$
5
$$

Mean $=5.6$

Outliers

- Outliers do not have extreme effects on the median

Consider:
$5,6,4,7,6,19$
$5,6,4,7,6$

Arrange from lowest to highest:
$4,5,6,6,7,19$
$4,5,6,6,7$
$=6$
$=6$
A\%

