

Basic Statistics

Probability and Confidence Intervals

Learning Intentions

Today we will understand:

Interpreting the meaning of a confidence interval

Calculating the confidence interval for the mean with large and small samples

Probability and Confidence Intervals

JAMES COOK
UNIVERSITY
AUSTRALIA

 An important role of statistics is to use information gathered from a sample to make statements about the population from which it was chosen

- Using samples as an estimate of the population
- How good of an estimate is that sample providing us with?

Estimators of a Population

- A Point estimate is a single value that best describes the population of interest
- Sample mean is the most common point estimate
- An Interval estimate provides a range of values that best describes the population

Point Estimate

- Single value that best describes the population of interest
- Sample mean is most common point estimate
- Easy to calculate and easy to understand
- Gives no indication of how accurate the estimation really is

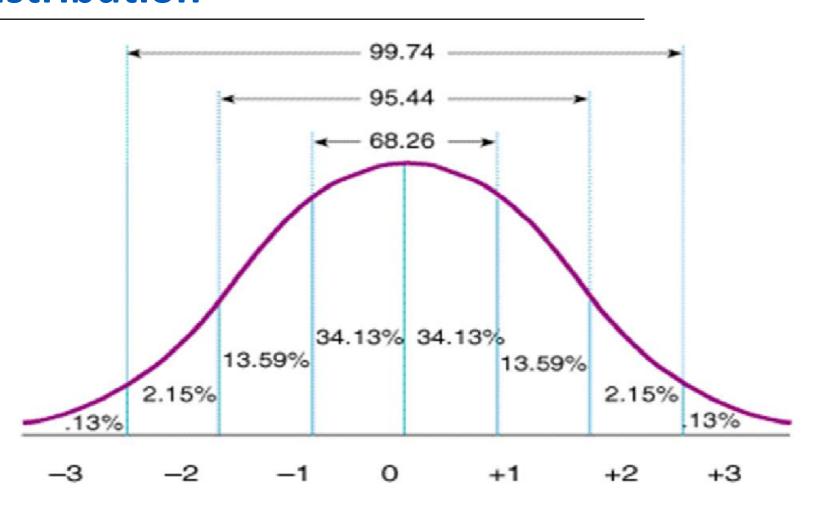
Interval Estimate

- ▶ To deal with uncertainty, we can use an interval estimate
- Provides a range of values that best describe the population
- To develop an interval estimate we need to learn about confidence levels

Confidence Levels

- A confidence level is the probability that the interval estimate will include the population parameter (such as the mean)
- A parameter is a numerical description of a characteristic of the population

*Remember - Standard Normal Distribution



Normal distribution with $\mu = 0$ and SD = 1

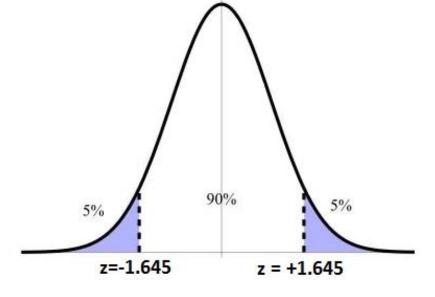
Confidence Levels

▶ Sample means will follow the normal probability distribution for large sample sizes ($n \ge 30$)

▶ To construct an interval estimate with a 90 % confidence

level

 Confidence level corresponds to a z-score from the standard normal table equal to 1.645



- A confidence interval is a range of values used to estimate a population parameter and is associated with a specific confidence level
- Construct confidence interval around a sample mean using these equations:

$$\overline{x}\pm z\sigma_{ar{X}}$$

$$\overline{x}\pm z\sigma_{ar{X}}$$

Where:

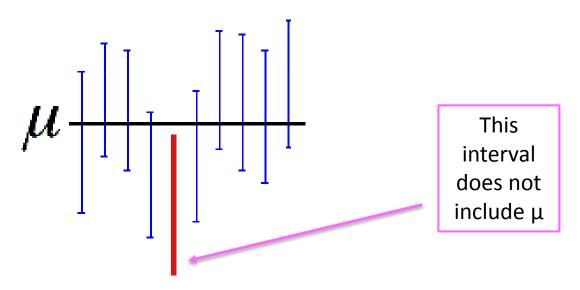
 \overline{x} = the sample mean

 $\mathcal{Z}_{}$ = the z-score, which is the number of standard deviations based on the confidence level

 $oldsymbol{\sigma}_{ar{X}}$ = the standard error of the mean

- A confidence interval is a range of values used to estimate a population parameter and is associated with a specific confidence level
- Associated with specific confidence level
- Needs to be described in the context of several samples

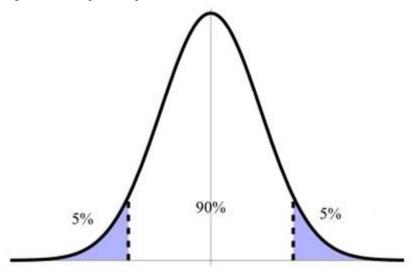
- Select 10 samples and construct 90 % confidence intervals around each of the sample means
- Theoretically, 9 of the 10 intervals will contain the true population mean, which remains unknown



- Careful not to misinterpret the definition of a confidence interval
- NOT Correct "there is a 90 % probability that the true population mean is within the interval"
- CORRECT "there is a 90 % probability that any given confidence interval from a random sample will contain the true population mean

Level of Significance

- As there is a 90 % probability that any given confidence interval will contain the true population mean, there is a 10 % chance that it won't
- This 10 % is known as the level of significance (α) and is represented by the purple shaded area



Level of Significance

- Level of significance (α) is the probability of making a type 1 error (next week)
- The probability for the confidence interval is a complement to the significance level
- A (1α) confidence interval has a significance level equal to

No worries mate!
We are still significant!

When σ is Unknown

- ightharpoonup So far our examples have assumed we know σ the population standard deviation
- If σ is unknown we can substitute s (sample standard deviation) for σ
- n ≥ 30
- We use $\hat{\sigma}_{ar{X}}$ to show we have approximated the standard

error of the mean by using s instead of σ

Using Excel

- You can calculate confidence intervals in Excel
- CONFIDENCE(alpha, standard_dev, size)

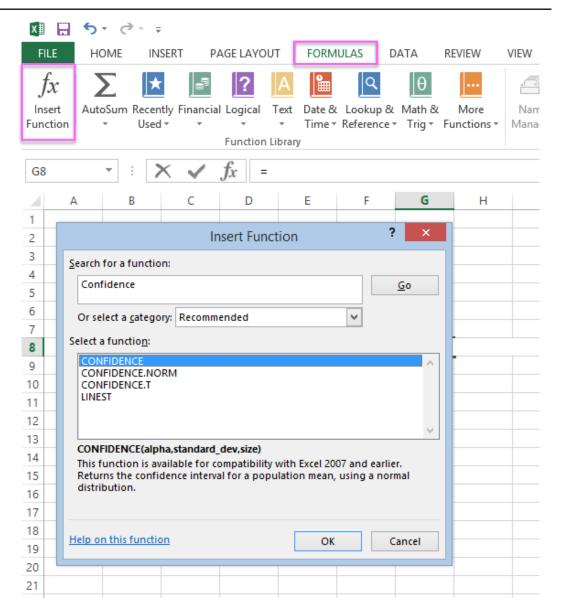
Where:

```
Alpha = the significance level

Standard_dev = standard deviation of the population

Size = sample size
```


Using Excel



Confidence Intervals for the Mean with Small Samples

- ▶ So far we have discussed confidence intervals for the mean where $n \ge 30$
- $m{\sigma}$ is known, we are assuming the population is normally distributed and so we can follow the procedure for large sample sizes
- When σ is unknown (more often the case!) we make adjustments

When σ is Unknown – Small Samples

- Substitute s, sample standard deviation, for σ
- Because of the small sample size, this substitution forces us to use the t-distribution probability distribution
- Continuous probability distribution
- Bell-shaped and symmetrical around the mean
- Shape of curve depends on degrees of freedom (d.f) which equals n - 1

T-distribution

- Flatter than normal distribution
- As degrees of freedom increase, the shape of t-distribution becomes similar to normal distribution
- With more than 30 d.f. (sample size of 30 or more) the two distributions are practically identical

