Basic Statistics

Describing Data - Measures of Spread

Learning, Teaching and Student Engagement

Describing Data

Learning Intentions

Today we will understand:

- Measures of Spread
* Calculate the range of a sample

* Determine quartiles and interquartile range
* Calculate variance
* Calculate standard deviation

Describing Data

Two descriptions of data:

- Measures of Central Tendency
- Measures of Dispersion

Measures of Spread

- Also called measures of dispersion
- Describes variability in a sample or population
- Used in conjunction with a measure of central tendency to provide overall description of data

Range

- Simplest measure of spread
- Difference between the largest value and the smallest value of a dataset
- Range = maximum value - minimum value

$$
\begin{aligned}
\text { Range } & =47-12 \\
& =35
\end{aligned}
$$

Quartiles

- Ranked data - arranged into ascending order of magnitude
- Data can be divided into four groups - each with an equal number of data points

Quartiles

$\mathrm{Q}_{1}: 1^{\text {st }}$ Quartile/Lower Quartile - Median of the lower half of the data set - 25% of data lies below - 75% of data lies above	Q_{2} : $\mathbf{2}^{\text {nd }}$ Quartile/Median - Another name for the median - 50% of data lies below - 50% of data lies above	$\mathrm{Q}_{3}: 3^{\text {rd }}$ Quartile/Upper Quartile - Median of the upper half of the data set - 75% of data lies below - 25% of data lies above

Interquartile Range

- Difference between the third quartile, Q_{3}, and the first quartile, Q_{1}
- $I Q R=Q_{3}-Q_{1}$
- Range for the middle 50% of data

- IQR = 51-26.5
$=24.5$

Quartiles and Interquartile Range

- Box and whisker plots are used to represent quartiles and the interquartile range

Variance

- Variance is a numerical value which indicates how 'spread out' a group of data points are
- Variance is derived from the difference between the value of each observation and the mean
- If individual observations vary greatly from the group mean, the variance is big; and vice versa

Population Variance

 UNIVERSITY AUSTRALIA- If data is for a population

Remember:

Population

Population Variance

$$
\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{n}
$$

Where:
$\sigma^{2}=$ variance of the population (pronounced sigma squared)
$x_{i}=$ the measurement of each data unit in the population
$\mu=$ the population mean
n = the size of the population

Population Variance

Age of Students in SC1102

x_{i}	$\boldsymbol{\mu}$	
		The first step is to calculate
21	25.75	the mean of the population
23	25.75	(μ)
28	25.75	
47	25.75	
20	25.75	$\underline{21+23+28+47+20+19+25+23}$
19	25.75	8
25	25.75	
23	25.75	$=25.75$

Population Variance

Subtract the
mean of the
population
(μ) from the
measurement
of each data
unit in the
population

Population Variance

 UNIVERSITY australia| Age of Students in SC1102 | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\boldsymbol{\chi}_{\boldsymbol{i}}$ | | $\boldsymbol{\mu}$ | | $\boldsymbol{X}_{\boldsymbol{i}}-\boldsymbol{\mu}$ | $\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}\right)^{\mathbf{2}}$ |
| | | | | | |
| 21 | 25.75 | -4.75 | 22.5625 | | |
| 23 | 25.75 | -2.75 | 7.5625 | | |
| 28 | 25.75 | 2.25 | 5.0625 | | |
| 47 | 25.75 | 21.25 | 451.5625 | | |
| 20 | 25.75 | -5.75 | 33.0625 | | |
| 19 | 25.75 | -6.75 | 45.5625 | | |
| 25 | 25.75 | -0.75 | 0.5625 | | |
| 23 | 25.75 | -2.75 | 7.5625 | | |
| | | | | | |

Square each value for

$$
x_{i}-\mu
$$

Population Variance

Population Variance

$$
\begin{aligned}
\sigma^{2} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{n} \\
& =\frac{573.5}{8} \\
& =71.7
\end{aligned}
$$

Sample Variance

 UNIVERSITY AUSTRALIA- If data is for a sample

Remember:

Population

Sample Variance

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Where:
$S^{2}=$ the variance of the sample
$x_{i}=$ the measurement of each data unit in the sample
$\bar{X}=$ the sample mean
$n=$ the size of the sample (the number of data values)

Sample Variance

Height of JCU Students (cm)

\mathcal{X}_{i}	$\bar{\chi}$	The first step is to calculate the mean of the sample:
155	170	\bar{X}
161	170	
172	170	
164	170	
186	170	$\underline{155+161+172+164+186+173+168+169+170+182}$
173	170	10
168	170	$=170$
169	170	
170	170	
182	170	

Sample Variance

Subtract the mean of the sample (\bar{x}) from the measurement of each data unit in the sample

Sample Variance

Square each value for

$$
x_{i}-\bar{x}
$$

Sample Variance

Sample Variance

$$
\begin{aligned}
s^{2} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \\
& =\frac{760}{(10-1)} \\
& =88.4
\end{aligned}
$$

Standard Deviation

- Standard deviation is the square root of the variance
- There is SD for both the population and sample
- To calculate, first calculate the variance and then take the square root as the result
- A more useful measure than the variance as SD is in the units of the original data set

Standard Deviation - Population

$$
\sigma=\sqrt{\sum_{i=1}(x-\mu)^{2}}
$$

n

Where:
$\sigma=$ the standard deviation of the population
$x_{i}=$ the measurement of each data unit in the population
$\mu=$ the population mean
$n=$ the size of the population

Standard Deviation - Sample

Where:

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

$S=$ the standard deviation of the sample
$X_{i}=$ the measurement of each data unit in the sample
$\bar{X}=$ the sample mean
$n=$ the size of the sample (the number of data values)

Standard Deviation - The Empirical Rule

- If the data distribution resembles a bell shape (ie. data is normally distributed)

- The empirical rule tells us approximately 68% of data values will fall within 1 standard deviation of the mean
- 95% of data values will fall within 2 standard deviations of the mean
- 99.7 \% of data values will fall within 3 standard deviations of the mean

Standard Deviation - The Empirical Rule

Standard Deviation - The Empirical Rule

- Mean exam score in a statistics class is 78% and SD is 4%
- Data normally distributed
- One SD above the mean is $82 \%(78+4)$
- One SD below the mean is $74 \%(78-4)$

- 68 \% of the classes exam scores will fall between 74 \% and 82 \%

