Maths Refresher

Roots and Powers

Roots and Powers

Learning intentions

- Powers
- Scientific notation
- Indices
- Index laws
- Square roots
- Cube roots
- Root operations
- Logarithms
- "Powers" are a method of simplifying equations.
- If I had a sum: $7+7+7+7+7+7+7+7+7=$? I could simplify by writing $7 \times 9=$?
- If I had a multiplication:

$$
\begin{aligned}
& -7 \times 7 \times 7=? \\
& \text { I could simplify by writing } 7^{9}=?
\end{aligned}
$$

- A simple way to describe powers is to think of them as how many times you multiply the base number by itself.

The 5 is called the base.

- The expression 5^{4} is called a power of 5
- The raised 4 in 5^{4} is called the index or exponent or the power
- The number 5 in 5^{4} is called the base of the power
- The exponent is written as a superscript.
- Positive exponents indicate the number of times a term is to be multiplied by itself.
5^{4} is the same as $5 \times 5 \times 5 \times 5$, which is the same as 625 The most common way to describe the number is to call it "five to the power of four"
- For example:
- The two most common powers (2 \& 3) are given names related to geometry, as shown. For example:
- 3^{2} is called "three squared" and
- 3^{3} is called "three cubed"

Powers

The powers of 2 are: $2,4,8,16,32,64,128,256,512,1024,2048,4096,8192, \ldots$
The powers of 3 are: $3,9,27,81,243,729, \ldots$
The powers of 4 are every second power of 2 .
The powers of 5 are: $5,25,125,625,3125, \ldots$
The powers of 6 are: $6,36,216, \ldots$.
The powers of 7 are: $7,49,343, \ldots$
The powers of 8 are every third power of 2 .
It helps to be able to recognise some powers for later when working with logarithms
The powers of 9 are every second power of 3 .
The powers of 10 are: $10,100,1000,10000,100000,1000000, \ldots$
The powers of 16 are every fourth power of 2 .

Scientific notation

- As we explored in week one, our place value system of 10 displays every number as a product of multiples of powers of 10.

Scientific notation must always be written with the same components as the following model:

Scientific Notation

Scientific notation relates to place value. For example:

- $10^{5}=10 \times 10 \times 10 \times 10 \times 10=100000$. (Note: 100000 has 5 places to the right from one)
- $10^{-4}=\frac{1}{11^{4}}=10 \div 10 \div 10 \div 10=0.0001$. (Note: 0.0001 has 4 places to the left from one)
- $3000=3 \times 1000=3 \times 10^{3}$ (3places to the right)
- $704500000=7.045 \times 100000000=7.045 \times 10^{8}$ (8 places to the right)
- The number of molecules in 18 grams of water is 602000000000000000000000 which is written as 6.02×10^{23}

Watch this short Khan Academy video for further explanation:
"Scientific notation"

SCIENTIFIC NOTATION

Example problems:

1. $3459=3.459 \times 10^{3}$
2. $0.000004567=4.567 \times 10^{-6}$

Practise problems:
Write the following in scientific notation:

1. 450
2. 90000000
3. 3.5
4. 0.0975

Write the following numbers out in full:

1. 3.75×10^{2}
2. 3.97×10^{1}
3. 1.875×10^{-1}
4. -8.75×10^{-3}

Answers

Write the following in scientific notation:
$450=4.5 \times 10^{2}$
$90000000=9.0 \times 10^{7}$
$3.5=$ is already in standard form
$0.0975=9.75 \times 10^{-2}$
Write the following numbers out in full:
$3.75 \times 10^{2}=375$
$3.97 \times 10^{1}=39.7$
$1.875 \times 10^{-1}=0.1875$
$-8.75 \times 10^{-3}=-0.00875$

Indices

- Working with powers/indices assist calculations and simplifying problems.
- There are laws which assist us to work with indices.
- The next few slides will explain the 'index laws':

The first law

- $a^{m} \times a^{n}=a^{m+n}$
- How does this work?
- Let's write out the 'terms'
- $a^{7} \times a^{2}=a^{7+2}=a^{9}$

$$
7 \quad+\quad 2
$$

$(a \times a \times a \times a \times a \times a \times a)+(a \times a)$

The second law

- $\frac{x^{9}}{x^{6}}=x^{9-6}=x^{3}$
- How does this work?
- $\frac{x \times x \times x}{x \times x \times x \times x \times x \times x}=$ apply cancel method

$$
=x \times x \times x=x^{3}
$$

- From the second law we learn why $x^{0}=1$
- Any expression divided by itself equals 1
- so $\frac{x^{3}}{x^{3}}=1$ or $x^{3-3}=x^{0}$ which is 1

The third law

- $\left(b^{a}\right)^{m}=b^{a m}$
- $\left(b^{2}\right)^{3}$
- How does this work?
- $(b \times b) \times(b \times b) \times(b \times b)=b^{6}$
- Therefore, we multiply the indices.

Index laws

First law	$a^{\mathrm{m}} \times a^{\mathrm{n}}=a^{\mathrm{m}+\mathrm{n}}$
Second law	$\frac{a^{m}}{a^{n}}=a^{\mathrm{m}-\mathrm{n}}$
Third law	$\left(a^{\mathrm{m}}\right)^{\mathrm{n}}=\left(a^{\mathrm{n}}\right)^{\mathrm{m}}=a^{\mathrm{nm}}$

Q: What do you notice about these laws?

A: In each case, there is only one value for the base!

There are other Index Laws that help you deal with problems where the bases are different, and/or where the indices are different. For example, in IL8, there are two different base values, and only one index value.

Your turn

THE FIRST INDEX LAW

Simplify
$a^{4} b^{2} b^{3} a^{6}$
The Second Index Law

Simplify
$\frac{z^{5}}{z^{3}}$
The Third index law
$\left(b^{9}\right)^{2}$

Working with index laws

We often need to use several laws of indices to solve one problem. For example:
Simplify $\frac{\left(x^{3}\right)^{4}}{x^{2}}$

From the third law: $\left(x^{3}\right)^{4}=x^{12}$
So, $\frac{x^{12}}{x^{2}}=x^{10}$ (from the second law)

Working with the index lawsis

Powers can be simplified if they are multiplied or divided and have the same base.

Problem	Simplified	Law
5^{1}	5	
4^{0}	1	
$2^{3} \times 2^{2}$	$2^{3} \times 2^{2}=2^{3+2}=2^{5}$	
$2^{3} \div 2^{2}$	$2^{3-2}=2^{1}=2$	

$$
\left(2^{3}\right)^{2} \quad 2^{3 \times 2}=2^{6}
$$

Your turn

First law	$a^{\mathrm{m}} \times a^{\mathrm{n}}=a^{\mathrm{m}+\mathrm{n}}$
Second law	$\frac{a^{\mathrm{m}}}{a^{\mathrm{m}}}=a^{\mathrm{m}-\mathrm{n}}$
Third law	$\left(a^{\mathrm{m}}\right)^{\mathrm{n}}=\left(a^{\mathrm{n}}\right)^{\mathrm{m}}=a^{\mathrm{nm}}$

IL4	$a^{0}=1 \quad(a \neq 0)$
IL5	$a^{1}=a$
$I L 6$	$a^{-m}=\frac{1}{a^{m}}(a \neq 0)$
	$a^{m}=\frac{1}{a^{-m}}$
$I L 7$	$a^{1 / \mathrm{m}}=\sqrt[m]{a}$

Practise problems:

1. Simplify $5^{2} \times 5^{-}$
2. Simplify $x^{2} \div x^{2}$
3. Evaluate 14°
4. Evaluate 5 ${ }^{2}$
5. Simplify $\left(5^{4}\right)^{3}$
6. Simplify $x^{2 / x}$

WORKING WITH INDEX LAWS

$$
\begin{aligned}
& 5^{2} \times 5^{4}=5^{6} \\
& X^{2} \div x^{5}=x^{2-5}=x^{-3} \\
& 14^{0}=1 \\
& 5^{1}=5 \\
& \left(5^{4}\right)^{3}=5^{4 \times 3}=5^{12} \\
& x^{1 / 2}=\sqrt[2]{x}
\end{aligned}
$$

Square Roots

- If we look at the relationship between 5 and 25
- What can we say about the numbers?
- We know that 5 squared is 25 (5×5)
- So we could then say that 25 is the square of five - which means that 5 is the square root of 25
$-\sqrt{25}=5$ and $5^{2}=25$

Cube Roots

- If we look at the relationship between 3 and 27
- What can we say about the numbers?
- We know that 3 cubed is $27(3 \times 3 \times 3)$
- So we could then say 3 is the cube root of 27
$-\sqrt[3]{27}=3$ and $3^{3}=27$
- Also when working with negative numbers
$-(-2)^{3}=-8$
--5 is also the square root of 25
$-(-5) \times(-5)=25$ so -5 is also the $\sqrt{25}$
cubing

Cube rooting

More on Roots

- A root is used to find an unknown base.

$$
\sqrt{a}
$$

- Here, the root symbol is called the radical symbol, and the a is referred to as the radicand.
- Like indices, the two most common roots (2 \& 3) are called square root and cube root.
For example:
$\sqrt{64}$ is called "the square root of 64 ".
$\sqrt[3]{27}$ is called "the cube root of 27 "
(Note: square root does not have a 2 at the front, it is assumed).
- In words, $\sqrt{64}$ means "what number multiplied by itself equals 64 ". What do you think $\sqrt[3]{27}$ means in words?

More on Roots

- Simplifying roots is difficult and, as such, being able to estimate the root of a number is a useful practice - particularly when you don't have a calculator.
- To estimate a root, we must know the common powers. Some common powers are given in the table on the next slide:

Power		Answer	Using the table: $\sqrt{81}= \pm 9$ So, there are two square roots of any positive number. What about negative numbers? For example, does -100 have any square roots?
1^{2}	$(-1)^{2}$	1	
$\mathbf{2}^{\mathbf{2}}$	$(-2)^{2}$	4	
3^{2}	$(-3)^{2}$	9	
4^{2}	$(-4)^{2}$	16	
5^{2}	$(-5)^{2}$	25	
6^{2}	$(-6)^{2}$	36	
$7^{\mathbf{2}}$	$(-7)^{2}$	49	No, it doesn't.
8^{2}	$(-8)^{2}$	64	Why not?
9^{2}	$(-9)^{2}$	81	
10^{2}	$(-10)^{2}$	100	Negative numbers don't have
11^{2}	$(-11)^{2}$	121	square roots because a square is either positive or zero
12^{2}	$(-12)^{2}$	144	

Power		Answer	But what about if the radicand is not a perfect square? For example: $\sqrt{56}=?$ Using the table, we can estimate that the answer is a number between 7 and 8 (actual answer \pm 7.48).
1^{2}	$(-1)^{2}$	1	
$2^{\mathbf{2}}$	$(-2)^{2}$	4	
3^{2}	$(-3)^{2}$	9	
4^{2}	$(-4)^{2}$	16	
5^{2}	$(-5)^{2}$	25	
6^{2}	$(-6)^{2}$	36	A surd is a special root which cannot be simplified into a whole number.
$7^{\mathbf{2}}$	$(-7)^{2}$	49	For example, $\sqrt{4}=2$
$8^{\mathbf{2}}$	$(-8)^{2}$	64	2 is a whole number, therefore $\sqrt{4}$ is not a surd. In contrast
9^{2}	$(-9)^{2}$	81	$\sqrt{3}=1.732$
10^{2}	$(-10)^{2}$	100	1.732 is not a whole number, therefore $\sqrt{3}$ is a surd
11^{2}	$(-11)^{2}$	121	Large roots e.g. $\sqrt{56}$ must be simplified to
12^{2}	$(-12)^{2}$	144	explained on the next slide.

Root Operations

Simplify $\sqrt{56}$

56 has multiple factors: 1×56 or 2×28 or 4×14 or 7×8.
4×14 are the key factors, since one of them (4) is a square number.

So, we can simplify $\sqrt{56}=\sqrt{4} \times \sqrt{14}=2 \sqrt{14}$ (because $\sqrt{4}=2$)

Root operations

Rules	Example
$\sqrt{a} \sqrt{b}=\sqrt{a b}$	$\sqrt{6} \times \sqrt{4}=\sqrt{6 \times 4}=\sqrt{24}$
$\sqrt{a} \div \sqrt{b}=\frac{\sqrt{a}}{\sqrt{b}}=$	
$\sqrt{\frac{a}{b}}$	$\sqrt{25} \div \sqrt{16}=\frac{\sqrt{25}}{\sqrt{16}}=\sqrt{\frac{25}{16}}$
$\sqrt{a^{2}}=\|a\|$	$\sqrt{5^{2}}=5$ (absolute value)

Your turn

Working with root operations

1. Indicate which of these is the radical and which is the radicand \sqrt{a}
2. What are the square roots of the following numbers:
$100,64,9$
3. Simplify $\sqrt{4} \sqrt{16}$
4. Simplify the square root of 54 .
5. Use your calculator to find the cube root of 37 . Is this a surd?
6. Indicate which of these is the radical and which is the radicand \sqrt{a}
7. What are the square roots of the following numbers:
100 (± 10); $64(\pm 8) ; 9(\pm 3)$
8. Simplify $\sqrt{4} \sqrt{16}=\sqrt{4 \times 16}=\sqrt{64}=8$
9. Simplify the square root of $54=\sqrt{9} \times \sqrt{6}=3 \sqrt{6}$
10. Use your calculator to find the cube root of $37=$ 3.332

Is this a surd? Yes

Your turn ...

DIRECTIONS: Find each square root.

1. $\sqrt{9}$
2. $\sqrt{36}$
3. $\sqrt{100}$
4. $\sqrt{81}$
5. $\sqrt{1}$
6. $\sqrt{4}$
7. $-\sqrt{25}$
8. $\sqrt{36}-\sqrt{49}$
9. $\sqrt{121}$
10. $\sqrt{64}+\sqrt{4}$
11. $-\sqrt{36}+\sqrt{9}$
12. $\sqrt{49}-\sqrt{25}$
13. ± 3
14. ± 6
15. ± 10
16. ± 9
17. ± 1
18. ± 2
19. -5
20. -1
21. ± 11
22. 10
23. -3
24. 2

ogarithms

- Logarithms count multiplication as steps
- Logarithms describe changes in terms of multiplication: in a log10 problem, each step is $10 \times$ bigger. With the natural log, each step is "e" (2.71828...) times more.
- When dealing with a series of multiplications, logarithms help "count" them
- For example:
$1000=10 \times 10 \times 10=10^{3}$, the index 3 shows us that that there have been 3 lots of multiplication by 10 to get from 10 to 1000 .

Logarithms

- Given an equation such as $125=5^{3}$, we call 5 the base and 3 the exponent or index.
- We can use logarithms to write the equation in another form. The logarithm form is $\log _{5} 125=3$
- This is read as "logarithm to the base 5 of 125 is 3 ".
- In general, if $y=a^{x}$ then
$\log _{a} y=x$
In other words:
$y=a^{x}$ and $\log _{a} y=x$ are equivalent

Logarithms

Worked example. Write the following in logarithmic form:
$16=4^{2}$
$2=\log _{4} 16$

In words: 2 is the logarithm to base 4 of 16 .

Let's try another:
$8=2^{3}$
$3=\log _{2} 8$

In words:
3 is the logarithm to base 2 of 8

Logarithms

Logarithms can also be written in exponential form. For example:

- $\log _{2} 16=4$

Here, the base is 2 , so we can write
$16=2^{4}$

Let's try another one together:
 $\log _{3} 27=3$

Here, 3 is the base,
and so
$27=3^{3}$

There are laws of logarithms that should be followed when
working with logarithms

Logarithms

- Khan Academy video "Logarithms"
https://www.khanacademy.org/math/algebra2/logarithm s-tutorial/logarithm_basics/v/logarithms
- Using logs in the real world
http://betterexplained.com/articles/using-logs-in-the-real-world/
- TED talk: Logarithms explained
http://ed.ted.com/lessons/steve-kelly-logarithmsexplained

Roots and Powers

Reflect on the learning intentions

- Powers
- Scientific notation
- Indices
- Index laws
- Square roots
- Cube roots
- Root operations
- Logarithms

Resources

Australian Mathematical Sciences Institute. (2011). Fractions and the index laws in algebra. Retrieved from http://www.amsi.org.au/teacher modules/pdfs
Australian Mathematical Sciences Institute. (2011). Multiples, factors and powers. Retrieved from http://www.amsi.org.au/teacher_modules/pdfs
Muschla, J. A., Muschla, G. R., Muschla, E. (2011).
The algebra teacher's guide to reteaching essential concepts and skills. San Francisco: Jossey-Bass

